
Week 1 - Wednesday



 Course overview
 Big Theta of code







 You come to a fork in the road
 Two men stand beneath a sign that reads:
 Ask for the way, but waste not your breath
 One road is freedom, the other is death
 Just one of the pair will lead you aright
 For one is a Knave, the other a Knight

 What single yes-or-no question can you ask to determine 
which fork to take?





 What's the Big Theta bound if n is n?

int counter = 1;
for(int i = 1; i <= n; ++i) {

for(int j = 0; j < counter; ++j)
System.out.println("$");

counter *= 2;
}



 What's the Big Theta bound if n is n?

int counter = 1;
for(int i = 1; i <= n; ++i) {

for(int j = 0; j < n/counter; ++j)
System.out.println("$");

counter *= 2;
}



 What's the Big Theta bound if n is n?

for(int i = 0; i*i < n; ++i)
for(int j = 0; j < n; ++j)

System.out.println("%");



 For difficult loops, there are two challenges:
1. Turning the loops into summation notation
2. Simplifying the summation into closed-form expressions (without 

the Σ)
 Practice both parts!





 A proof is a tool to convince ourselves (and others) that a 
statement is completely true

 A direct proof starts with a set of true statements:
 Axioms (things that are always true)
 Premises (things that we assume are true for this proof)

 Then, you take those true things and generate more true 
statements using definitions, the laws of mathematics, and 
logic

 When you're able to generate the conclusion you wanted to 
prove, you're done!



 The universal quantifier ∀ means "for all"
 The statement "All DJs are mad ill" can be written more formally 

as:
 ∀x ∈ D, M(x)
 Where D is the set of DJs and M(x) denotes that x is mad ill

 We will often want to prove that if something has some property, 
it will have some other property

 For example:
 ∀x ∈ D, B(x) → S(x)
 Imagine that B(x) means that x breaks it down funky style and that S(x) 

means that x stacks cheddar



 The existential quantifier ∃ means "there exists"
 The statement "Some emcee can bust a rhyme" can be 

written more formally as:
 ∃y ∈ E, B(y)
 Where E is the set of emcees and B(y) denotes that y can bust a 

rhyme



 When doing a negation, negate the predicate and change the 
universal quantifier to existential or vice versa

 Formally:
 ~(∀x, P(x)) ≡ ∃x, ~P(x)
 ~(∃x, P(x)) ≡ ∀x, ~P(x)

 Thus, the negation of "Every dragon breathes fire" is "There is 
a dragon that does not breathe fire"





 A statement like the following:

∃x ∈ D such that P(x)

 is true, if and only if, you can find at least one element of D that 
makes P(x) true

 To prove this, you either have to find such an x or give a set of 
steps to find one

 Doing so is called a constructive proof of existence
 There are also nonconstructive proofs of existence that depend 

on using some other axiom or theorem



 Prove that there is a positive integer that can be written as the 
sum of the squares of two positive integers in two distinct 
ways

 More formally, prove:
 ∃x, y, z, a, b ∈ Z+ such that x = y2 + z2 and x = a2 + b2 and y ≠ a and y ≠

b
 Suppose that r and s are integers.  Prove that there is an 

integer k such that 22r +18s = 2k



 Disproving universal statements is structurally similar to 
proving existential ones

 Instead of needing any single example that works, we need a 
single example that doesn't work, called a counterexample

 Why?
 To disprove ∀x ∈ D, P(x) → Q(x), we need to find an x that 

makes P(x) true and Q(x) false



 Using counterexamples, disprove the following statements:
 ∀a, b ∈ R, if a2 = b2 then a = b
 ∀x ∈ Z, if x ≥ 2 and x is odd, x is prime
 ∀y ∈ Z+, if y is odd, then (y – 1)/2 is prime





 If the domain is finite, try every possible value
 Example:
 ∀x ∈ Z+, if 4 ≤ x ≤ 10 and x is even, x can be written as the sum of two 

prime numbers
 Is this familiar to anyone?
 Goldbach's Conjecture proposes that this is true for all even 

integers greater than 2



 We'll start with basic definitions of even and odd to allow us to 
prove simple theorems

 If n is an integer, then:
 n is even ⇔∃ k ∈ Z such that n = 2k
 n is odd ⇔∃ k ∈ Z such that n = 2k + 1

 Since these are bidirectional, each side implies the other 



 Pick some specific (but arbitrary) element from the domain
 Show that the property holds for that element, just because 

of that properties that any such element must have
 Thus, it must be true for all elements with the property
 Example: ∀x ∈ Z, if x is even, then x + 1 is odd



 Direct proof uses the method of generalizing from a generic 
particular, following these steps:
1. Express the statement to be proved in the form ∀x ∈ D, if P(x) then 

Q(x)
2. Suppose that x is some specific (but arbitrarily chosen) element of 

D for which P(x) is true
3. Show that the conclusion Q(x) is true by using definitions, other 

theorems, and the rules for logical inference 



 Prove that the sum of any two odd integers is even



 In a proof by contradiction, you begin by assuming the 
negation of the conclusion

 Then, you show that doing so leads to a logical impossibility
 Thus, the assumption must be false and the conclusion true



 A proof by contradiction is different from a direct proof 
because you are trying to get to a point where things don't 
make sense

 You should always clearly state that it's a proof by 
contradiction

 You will reach a point where you have p and ~p, mark that as a 
contradiction

 If you're doing a proof by contradiction and you actually show 
the thing you wanted to prove in the first place, it's not a 
proof!



 Theorem:  There is no integer that is both even and odd
 Proof by contradiction:  Assume that there is an integer that 

is both even and odd



1. Suppose 2 is rational
2. 2 = m/n, where m,n ∈Z, n ≠ 0 and 

m and n have no common factors
3. 2 = m2/n2

4. 2n2 = m2

5. 2k = m2, k ∈Z
6. m = 2a, a ∈Z
7. 2n2 = (2a)2 = 4a2

8. n2 = 2a2

9. n = 2b, b ∈Z
10. 2 divides m and 2 divides n

11. 2 is irrational
∎

1. Negation of conclusion
2. Definition of rational

3. Squaring both sides
4. Multiply both sides by n

2

5. Square of integer is integer
6. Even x

2
implies even x (Proven elsewhere)

7. Substitution
8. Transitivity
9. Even x

2
implies even x

10. Conjunction of 6 and 9, contradiction

11. By contradiction in 10, supposition is false

Theorem: 2 is irrational
Proof by contradiction:







 Algorithm designers often consider any algorithm that runs in 
polynomial time to be "efficient"
 Obviously untrue for n100

 In practice, most polynomial time algorithms have reasonable 
exponents
 And few non-polynomial algorithms run in reasonable time

 All polynomial running times have the property that doubling the 
input size will increase the work by some constant tied to the 
highest degree of the polynomial
 Doubling in a quadratic takes 4 times as much work
 Doubling in a cubic takes 8 times as much work



n n log n n2 n3 1.5n 2n n!

10 < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s 4 s

30 < 1 s < 1 s < 1 s < 1 s < 1 s 18 minutes 1025 years

50 < 1 s < 1 s < 1 s < 1 s 11 minutes 36 years ∞

100 < 1 s < 1 s < 1 s 1 s 12,892 years 1017 years ∞

1,000 < 1 s < 1 s 1 s 18 minutes ∞ ∞ ∞

10,000 < 1 s < 1 s 2 minutes 12 days ∞ ∞ ∞

100,000 < 1 s 2 s 3 hours 32 years ∞ ∞ ∞

1,000,000 1 s 20 s 12 days 31,710 years ∞ ∞ ∞

For the purposes of this table, we will mark any value greater than 1025 years with ∞.  Note that the age 
of the universe is less than 1.4 x 1010 years

Time to do the number of instructions given based on a machine that can do one million instructions 
per second





 Stable Marriage
 Five representative problems:
 Interval scheduling
 Weighted interval scheduling
 Bipartite matching
 Independent set
 Competitive facility location



 Read Sections 1.1 and 1.2
 Assignment 1 is due next Friday
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