Week 1 - Wednesday

Last time

- Course overview
- Big Theta of code

Questions?

Assignment 1

Logical warmup

- You come to a fork in the road
- Two men stand beneath a sign that reads:
 - Ask for the way, but waste not your breath
 - One road is freedom, the other is death
 - Just one of the pair will lead you aright
 - For one is a Knave, the other a Knight
- What single yes-or-no question can you ask to determine which fork to take?

Back to Big Theta

Steps on steps on steps

What's the Big Theta bound if n is n?

int counter = 1; for(int i = 1; i <= n; ++i) { for(int j = 0; j < counter; ++j) System.out.println("\$"); counter *= 2;

Switch it up

What's the Big Theta bound if n is n?

int counter = 1; for(int i = 1; i <= n; ++i) { for(int j = 0; j < n/counter; ++j) System.out.println("\$"); counter *= 2;

Back to your roots

What's the Big Theta bound if n is n?

for(int i = 0; i*i < n; ++i) for(int j = 0; j < n; ++j) System.out.println("%");</pre>

Finding the Big Theta of loops

- For difficult loops, there are two challenges:
 - **1**. Turning the loops into summation notation
 - 2. Simplifying the summation into closed-form expressions (without the Σ)
- Practice both parts!

Proofs

The nature of a proof

- A proof is a tool to convince ourselves (and others) that a statement is completely true
- A direct proof starts with a set of true statements:
 - Axioms (things that are always true)
 - Premises (things that we assume are true for this proof)
- Then, you take those true things and generate more true statements using definitions, the laws of mathematics, and logic
- When you're able to generate the conclusion you wanted to prove, you're done!

Universal quantification

- The universal quantifier \forall means "for all"
- The statement "All DJs are mad ill" can be written more formally as:
- $\forall x \in D, M(x)$
 - Where **D** is the set of DJs and **M**(**x**) denotes that **x** is mad ill
- We will often want to prove that if something has some property, it will have some other property
- For example:
 - $\forall x \in D, B(x) \rightarrow S(x)$
 - Imagine that B(x) means that x breaks it down funky style and that S(x) means that x stacks cheddar

Existential quantification

- The existential quantifier ∃ means "there exists"
- The statement "Some emcee can bust a rhyme" can be written more formally as:
- $\blacksquare \exists y \in E, B(y)$
 - Where *E* is the set of emcees and *B*(*y*) denotes that *y* can bust a rhyme

Negating quantified statements

- When doing a negation, negate the predicate and change the universal quantifier to existential or vice versa
- Formally:
 - $\sim(\forall x, P(x)) \equiv \exists x, \sim P(x)$
 - $\sim(\exists x, P(x)) \equiv \forall x, \sim P(x)$
- Thus, the negation of "Every dragon breathes fire" is "There is a dragon that does not breathe fire"

Proving Existential Statements and Disproving Universal Ones

Proving existential statements

• A statement like the following:

$\exists x \in D$ such that P(x)

- is true, if and only if, you can find at least one element of *D* that makes *P(x)* true
- To prove this, you either have to find such an x or give a set of steps to find one
- Doing so is called a **constructive proof of existence**
- There are also nonconstructive proofs of existence that depend on using some other axiom or theorem

- Prove that there is a positive integer that can be written as the sum of the squares of two positive integers in two distinct ways
- More formally, prove:
 - $\exists x, y, z, a, b \in Z^+$ such that $x = y^2 + z^2$ and $x = a^2 + b^2$ and $y \neq a$ and $y \neq b$
- Suppose that *r* and *s* are integers. Prove that there is an integer *k* such that 22*r* +18*s* = 2*k*

Disproving universal statements

- Disproving universal statements is structurally similar to proving existential ones
- Instead of needing any single example that works, we need a single example that doesn't work, called a counterexample
 Why?
- To disprove $\forall x \in D, P(x) \rightarrow Q(x)$, we need to find an x that makes P(x) true and Q(x) false

- Using counterexamples, disprove the following statements:
- $\forall a, b \in \mathbf{R}$, if $a^2 = b^2$ then a = b
- $\forall x \in Z$, if $x \ge 2$ and x is odd, x is prime
- $\forall y \in Z^+$, if y is odd, then (y-1)/2 is prime

Proving Universal Statements

Method of exhaustion

- If the domain is finite, try every possible value
- Example:
 - ∀x ∈ Z⁺, if 4 ≤ x ≤ 10 and x is even, x can be written as the sum of two prime numbers
- Is this familiar to anyone?
- Goldbach's Conjecture proposes that this is true for all even integers greater than 2

A useful definition

- We'll start with basic definitions of even and odd to allow us to prove simple theorems
- If *n* is an integer, then:
 - n is even $\Leftrightarrow \exists k \in \mathbb{Z}$ such that n = 2k
 - *n* is odd $\Leftrightarrow \exists k \in \mathbb{Z}$ such that n = 2k + 1
- Since these are bidirectional, each side implies the other

Generalizing from the generic particular

- Pick some specific (but arbitrary) element from the domain
- Show that the property holds for that element, just because of that properties that any such element must have
- Thus, it must be true for all elements with the property
- Example: $\forall x \in Z$, if x is even, then x + 1 is odd

Direct proof

- Direct proof uses the method of generalizing from a generic particular, following these steps:
 - 1. Express the statement to be proved in the form $\forall x \in D$, if P(x) then Q(x)
 - Suppose that x is some specific (but arbitrarily chosen) element of D for which P(x) is true
 - 3. Show that the conclusion **Q**(**x**) is true by using definitions, other theorems, and the rules for logical inference

Direct proof example

Prove that the sum of any two odd integers is even

Proof by contradiction

- In a proof by contradiction, you begin by assuming the negation of the conclusion
- Then, you show that doing so leads to a logical impossibility
- Thus, the assumption must be false and the conclusion true

Contradiction formatting

- A proof by contradiction is different from a direct proof because you are trying to get to a point where things don't make sense
- You should always clearly state that it's a proof by contradiction
- You will reach a point where you have p and ~p, mark that as a contradiction
- If you're doing a proof by contradiction and you actually show the thing you wanted to prove in the first place, it's not a proof!

Proof by contradiction example

Theorem: There is no integer that is both even and odd
Proof by contradiction: Assume that there is an integer that is both even and odd

$\sqrt{2}$ is irrational

Theorem: $\sqrt{2}$ is irrational **Proof by contradiction:**

- 1. Suppose $\sqrt{2}$ is rational
- 2. $\sqrt{2} = m/n$, where $m, n \in \mathbb{Z}$, $n \neq 0$ and m and n have no common factors
- 3. $2 = m^2/n^2$
- 4. $2m^2 = m^2$
- 5. $2\mathbf{k} = \mathbf{m}^2, \mathbf{k} \in \mathbf{Z}$
- $6. \quad m=2a, a\in \mathbb{Z}$
- 7. $2n^2 = (2a)^2 = 4a^2$
- 8. $n^2 = 2a^2$
- $9. \quad n=2b, b\in \mathbb{Z}$
- 10. 2 divides **m** and 2 divides **n**
- 11. $\sqrt{2}$ is irrational

- 1. Negation of conclusion
- 2. Definition of rational
- 3 Squaring both sides
- 4 Multiply both sides by n^2
- Square of integer is integer
 Even x² implies even x (Prov
- ^{6.} Even \mathbf{x}^{\dagger} implies even \mathbf{x} (Proven elsewhere)
- 7. Substitution
- 8. Transitįvity
- 9. Even \mathbf{x}^2 implies even \mathbf{x}
- 10. Conjunction of 6 and 9, contradiction
- 11. By contradiction in 10, supposition is false

Three-sentence Summary of Computational Tractability and Asymptotic Orders of Growth

Computational Tractability

Why polynomial time?

- Algorithm designers often consider any algorithm that runs in polynomial time to be "efficient"
 - Obviously untrue for n¹⁰⁰
- In practicé, most polynomial time algorithms have reasonable exponents
 - And few non-polynomial algorithms run in reasonable time
- All polynomial running times have the property that doubling the input size will increase the work by some constant tied to the highest degree of the polynomial
 - Doubling in a quadratic takes 4 times as much work
 - Doubling in a cubic takes 8 times as much work

Table of running times

Time to do the number of instructions given based on a machine that can do one million instructions per second

	n	n log n	n ²	n ³	1.5 ⁿ	2 ⁿ	<i>n</i> !
10	<15	<15	< 1 S	< 1 S	< 1 5	< 1 S	4 S
30	<15	<15	< 1 S	< 1 S	< 1 S	18 minutes	10 ²⁵ years
50	<15	<15	< 1 S	< 1 S	11 minutes	36 years	∞
100	<15	<15	< 1 S	15	12,892 years	10 ¹⁷ years	∞
1,000	<15	<15	15	18 minutes	∞	∞	∞
10,000	<15	<15	2 minutes	12 days	∞	∞	∞
100,000	< 1 S	2 5	3 hours	32 years	∞	∞	∞
1,000,000	15	20 S	12 days	31,710 years	∞	∞	∞

For the purposes of this table, we will mark any value greater than 10^{25} years with ∞ . Note that the age of the universe is less than 1.4 x 10^{10} years

Upcoming

Next time...

- Stable Marriage
- Five representative problems:
 - Interval scheduling
 - Weighted interval scheduling
 - Bipartite matching
 - Independent set
 - Competitive facility location

- Read Sections 1.1 and 1.2
- Assignment 1 is due next Friday