
Week 1 - Wednesday



 Course overview
 Big Theta of code







 You come to a fork in the road
 Two men stand beneath a sign that reads:
 Ask for the way, but waste not your breath
 One road is freedom, the other is death
 Just one of the pair will lead you aright
 For one is a Knave, the other a Knight

 What single yes-or-no question can you ask to determine 
which fork to take?





 What's the Big Theta bound if n is n?

int counter = 1;
for(int i = 1; i <= n; ++i) {

for(int j = 0; j < counter; ++j)
System.out.println("$");

counter *= 2;
}



 What's the Big Theta bound if n is n?

int counter = 1;
for(int i = 1; i <= n; ++i) {

for(int j = 0; j < n/counter; ++j)
System.out.println("$");

counter *= 2;
}



 What's the Big Theta bound if n is n?

for(int i = 0; i*i < n; ++i)
for(int j = 0; j < n; ++j)

System.out.println("%");



 For difficult loops, there are two challenges:
1. Turning the loops into summation notation
2. Simplifying the summation into closed-form expressions (without 

the Σ)
 Practice both parts!





 A proof is a tool to convince ourselves (and others) that a 
statement is completely true

 A direct proof starts with a set of true statements:
 Axioms (things that are always true)
 Premises (things that we assume are true for this proof)

 Then, you take those true things and generate more true 
statements using definitions, the laws of mathematics, and 
logic

 When you're able to generate the conclusion you wanted to 
prove, you're done!



 The universal quantifier ∀ means "for all"
 The statement "All DJs are mad ill" can be written more formally 

as:
 ∀x ∈ D, M(x)
 Where D is the set of DJs and M(x) denotes that x is mad ill

 We will often want to prove that if something has some property, 
it will have some other property

 For example:
 ∀x ∈ D, B(x) → S(x)
 Imagine that B(x) means that x breaks it down funky style and that S(x) 

means that x stacks cheddar



 The existential quantifier ∃ means "there exists"
 The statement "Some emcee can bust a rhyme" can be 

written more formally as:
 ∃y ∈ E, B(y)
 Where E is the set of emcees and B(y) denotes that y can bust a 

rhyme



 When doing a negation, negate the predicate and change the 
universal quantifier to existential or vice versa

 Formally:
 ~(∀x, P(x)) ≡ ∃x, ~P(x)
 ~(∃x, P(x)) ≡ ∀x, ~P(x)

 Thus, the negation of "Every dragon breathes fire" is "There is 
a dragon that does not breathe fire"





 A statement like the following:

∃x ∈ D such that P(x)

 is true, if and only if, you can find at least one element of D that 
makes P(x) true

 To prove this, you either have to find such an x or give a set of 
steps to find one

 Doing so is called a constructive proof of existence
 There are also nonconstructive proofs of existence that depend 

on using some other axiom or theorem



 Prove that there is a positive integer that can be written as the 
sum of the squares of two positive integers in two distinct 
ways

 More formally, prove:
 ∃x, y, z, a, b ∈ Z+ such that x = y2 + z2 and x = a2 + b2 and y ≠ a and y ≠

b
 Suppose that r and s are integers.  Prove that there is an 

integer k such that 22r +18s = 2k



 Disproving universal statements is structurally similar to 
proving existential ones

 Instead of needing any single example that works, we need a 
single example that doesn't work, called a counterexample

 Why?
 To disprove ∀x ∈ D, P(x) → Q(x), we need to find an x that 

makes P(x) true and Q(x) false



 Using counterexamples, disprove the following statements:
 ∀a, b ∈ R, if a2 = b2 then a = b
 ∀x ∈ Z, if x ≥ 2 and x is odd, x is prime
 ∀y ∈ Z+, if y is odd, then (y – 1)/2 is prime





 If the domain is finite, try every possible value
 Example:
 ∀x ∈ Z+, if 4 ≤ x ≤ 10 and x is even, x can be written as the sum of two 

prime numbers
 Is this familiar to anyone?
 Goldbach's Conjecture proposes that this is true for all even 

integers greater than 2



 We'll start with basic definitions of even and odd to allow us to 
prove simple theorems

 If n is an integer, then:
 n is even ⇔∃ k ∈ Z such that n = 2k
 n is odd ⇔∃ k ∈ Z such that n = 2k + 1

 Since these are bidirectional, each side implies the other 



 Pick some specific (but arbitrary) element from the domain
 Show that the property holds for that element, just because 

of that properties that any such element must have
 Thus, it must be true for all elements with the property
 Example: ∀x ∈ Z, if x is even, then x + 1 is odd



 Direct proof uses the method of generalizing from a generic 
particular, following these steps:
1. Express the statement to be proved in the form ∀x ∈ D, if P(x) then 

Q(x)
2. Suppose that x is some specific (but arbitrarily chosen) element of 

D for which P(x) is true
3. Show that the conclusion Q(x) is true by using definitions, other 

theorems, and the rules for logical inference 



 Prove that the sum of any two odd integers is even



 In a proof by contradiction, you begin by assuming the 
negation of the conclusion

 Then, you show that doing so leads to a logical impossibility
 Thus, the assumption must be false and the conclusion true



 A proof by contradiction is different from a direct proof 
because you are trying to get to a point where things don't 
make sense

 You should always clearly state that it's a proof by 
contradiction

 You will reach a point where you have p and ~p, mark that as a 
contradiction

 If you're doing a proof by contradiction and you actually show 
the thing you wanted to prove in the first place, it's not a 
proof!



 Theorem:  There is no integer that is both even and odd
 Proof by contradiction:  Assume that there is an integer that 

is both even and odd



1. Suppose 2 is rational
2. 2 = m/n, where m,n ∈Z, n ≠ 0 and 

m and n have no common factors
3. 2 = m2/n2

4. 2n2 = m2

5. 2k = m2, k ∈Z
6. m = 2a, a ∈Z
7. 2n2 = (2a)2 = 4a2

8. n2 = 2a2

9. n = 2b, b ∈Z
10. 2 divides m and 2 divides n

11. 2 is irrational
∎

1. Negation of conclusion
2. Definition of rational

3. Squaring both sides
4. Multiply both sides by n

2

5. Square of integer is integer
6. Even x

2
implies even x (Proven elsewhere)

7. Substitution
8. Transitivity
9. Even x

2
implies even x

10. Conjunction of 6 and 9, contradiction

11. By contradiction in 10, supposition is false

Theorem: 2 is irrational
Proof by contradiction:







 Algorithm designers often consider any algorithm that runs in 
polynomial time to be "efficient"
 Obviously untrue for n100

 In practice, most polynomial time algorithms have reasonable 
exponents
 And few non-polynomial algorithms run in reasonable time

 All polynomial running times have the property that doubling the 
input size will increase the work by some constant tied to the 
highest degree of the polynomial
 Doubling in a quadratic takes 4 times as much work
 Doubling in a cubic takes 8 times as much work



n n log n n2 n3 1.5n 2n n!

10 < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s 4 s

30 < 1 s < 1 s < 1 s < 1 s < 1 s 18 minutes 1025 years

50 < 1 s < 1 s < 1 s < 1 s 11 minutes 36 years ∞

100 < 1 s < 1 s < 1 s 1 s 12,892 years 1017 years ∞

1,000 < 1 s < 1 s 1 s 18 minutes ∞ ∞ ∞

10,000 < 1 s < 1 s 2 minutes 12 days ∞ ∞ ∞

100,000 < 1 s 2 s 3 hours 32 years ∞ ∞ ∞

1,000,000 1 s 20 s 12 days 31,710 years ∞ ∞ ∞

For the purposes of this table, we will mark any value greater than 1025 years with ∞.  Note that the age 
of the universe is less than 1.4 x 1010 years

Time to do the number of instructions given based on a machine that can do one million instructions 
per second





 Stable Marriage
 Five representative problems:
 Interval scheduling
 Weighted interval scheduling
 Bipartite matching
 Independent set
 Competitive facility location



 Read Sections 1.1 and 1.2
 Assignment 1 is due next Friday
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